3.327 \(\int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx\)

Optimal. Leaf size=77 \[ \frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[Out]

1/3*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^2+1/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3238, 3815, 21, 3771, 2641} \[ \frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]

[Out]

(Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (Sec[c + d*x]^(3/2)*Sin[c + d*x]
)/(3*d*(a + a*Sec[c + d*x])^2)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3815

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*d*C
ot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] - Dist[d/(a*b*(2*m + 1)), Int
[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*(a*(n - 1) - b*(m + n)*Csc[e + f*x]), x], x] /; FreeQ[{
a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rubi steps

\begin {align*} \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx &=\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx\\ &=\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {a}{2}+\frac {1}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2}\\ &=\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \sqrt {\sec (c+d x)} \, dx}{6 a^2}\\ &=\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}\\ &=\frac {\sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.37, size = 98, normalized size = 1.27 \[ \frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )+4 \sqrt {\cos (c+d x)} \cos ^3\left (\frac {1}{2} (c+d x)\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{3 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(4*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - Sin[
(c + d*x)/2] + Sin[(3*(c + d*x))/2]))/(3*a^2*d*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

fricas [F]  time = 0.93, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{{\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\sec \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral(1/((a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 0.56, size = 188, normalized size = 2.44 \[ -\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1
/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+2*cos(1/2*d*x+1/2*c)^4-3*cos(1/2*d
*x+1/2*c)^2+1)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c
)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2),x)

[Out]

int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{\cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + 2 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

Integral(1/(cos(c + d*x)**2*sqrt(sec(c + d*x)) + 2*cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x)/a
**2

________________________________________________________________________________________